THE INITIAL ION EFFECT OF HEAVY METALS ADSORPTION BY USING HYDROTHERMAL CARBONIZATION BANANA PEELS
Journal: Environmental Contaminants Reviews (ECR)
Author: Nurhaliza Said Mohd, Rabiatul Manisah Mohamed
This is an open access article distributed under the Creative Commons Attribution License CC BY 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited
Doi:10.26480/ecr.01.2021.08.10
ABSTRACT
Accumulation of heavy metals in water is of particularly important because it can impact upon human health through possible contamination of food. The use of banana peel was investigated. Hydrothermal carbonization (HTC) was chosen as alternative process. The objective of this project is to synthesize banana peel hydrochars adsorbent via HTC process and to evaluate the heavy metals adsorption performance of banana peel hydrochars adsorbent. Conventional methods in removal of heavy metals require high operational cost, need highly skilled labour, and generate sludge at the end of the operation. Compared to other techniques, banana peel absorbent is a cost- effective adsorbent, easy to operate, environmentally safe and no health risk for the operator. Besides, large quantity of banana peel waste contributes to its significant disposal problem. Thus, this study is expected to solve problems of banana peel, by preparing banana peel adsorbent through hydrothermal carbonization. There are three phases in this project, phase 1 which is synthesis of banana peel based on hydrochars, banana peel was chopped the peels into small pieces. It was then soaked in KOH solution for 2hours and transferred into PTFE and heat for 2hours at 230°C. For phase 2, physico-chemical characterization of banana peels hydrochars by using FTIR. The result obtained shown that all of the content in banana peels will activate the surface of banana peel to enhance the adsorption of the heavy metals. For the final phase, by using AAS, the initial and final concentration of the metals was tested to determine the removal of heavy metals by the prepared hydrochars. The results showed that the removal capacity of the hydrochars increased when the initial concentration of the metals increased. From the research, it can be concluded that, as the initial concentration of the metals higher, the ability of the hydrochars to remove the metals also higher and stronger.
KEYWORDS
Hydrothermal carbonization, hydrochars, banana peel, FTIR, heavy metals